3.4.15 \(\int \frac {(e \cos (c+d x))^{5/2}}{(a+a \sin (c+d x))^{5/2}} \, dx\) [315]

3.4.15.1 Optimal result
3.4.15.2 Mathematica [C] (verified)
3.4.15.3 Rubi [A] (verified)
3.4.15.4 Maple [A] (verified)
3.4.15.5 Fricas [C] (verification not implemented)
3.4.15.6 Sympy [F(-1)]
3.4.15.7 Maxima [F]
3.4.15.8 Giac [F(-1)]
3.4.15.9 Mupad [F(-1)]

3.4.15.1 Optimal result

Integrand size = 27, antiderivative size = 218 \[ \int \frac {(e \cos (c+d x))^{5/2}}{(a+a \sin (c+d x))^{5/2}} \, dx=-\frac {4 e (e \cos (c+d x))^{3/2}}{3 a d (a+a \sin (c+d x))^{3/2}}-\frac {2 e^{5/2} \text {arcsinh}\left (\frac {\sqrt {e \cos (c+d x)}}{\sqrt {e}}\right ) \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}}{d \left (a^3+a^3 \cos (c+d x)+a^3 \sin (c+d x)\right )}-\frac {2 e^{5/2} \arctan \left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {e \cos (c+d x)} \sqrt {1+\cos (c+d x)}}\right ) \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}}{d \left (a^3+a^3 \cos (c+d x)+a^3 \sin (c+d x)\right )} \]

output
-4/3*e*(e*cos(d*x+c))^(3/2)/a/d/(a+a*sin(d*x+c))^(3/2)-2*e^(5/2)*arcsinh(( 
e*cos(d*x+c))^(1/2)/e^(1/2))*(1+cos(d*x+c))^(1/2)*(a+a*sin(d*x+c))^(1/2)/d 
/(a^3+a^3*cos(d*x+c)+a^3*sin(d*x+c))-2*e^(5/2)*arctan(sin(d*x+c)*e^(1/2)/( 
e*cos(d*x+c))^(1/2)/(1+cos(d*x+c))^(1/2))*(1+cos(d*x+c))^(1/2)*(a+a*sin(d* 
x+c))^(1/2)/d/(a^3+a^3*cos(d*x+c)+a^3*sin(d*x+c))
 
3.4.15.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.09 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.37 \[ \int \frac {(e \cos (c+d x))^{5/2}}{(a+a \sin (c+d x))^{5/2}} \, dx=-\frac {\sqrt [4]{2} (e \cos (c+d x))^{7/2} \operatorname {Hypergeometric2F1}\left (\frac {7}{4},\frac {7}{4},\frac {11}{4},\frac {1}{2} (1-\sin (c+d x))\right ) \sqrt {a (1+\sin (c+d x))}}{7 a^3 d e (1+\sin (c+d x))^{9/4}} \]

input
Integrate[(e*Cos[c + d*x])^(5/2)/(a + a*Sin[c + d*x])^(5/2),x]
 
output
-1/7*(2^(1/4)*(e*Cos[c + d*x])^(7/2)*Hypergeometric2F1[7/4, 7/4, 11/4, (1 
- Sin[c + d*x])/2]*Sqrt[a*(1 + Sin[c + d*x])])/(a^3*d*e*(1 + Sin[c + d*x]) 
^(9/4))
 
3.4.15.3 Rubi [A] (verified)

Time = 0.81 (sec) , antiderivative size = 215, normalized size of antiderivative = 0.99, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.407, Rules used = {3042, 3159, 3042, 3163, 3042, 25, 3254, 216, 3312, 63, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e \cos (c+d x))^{5/2}}{(a \sin (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(e \cos (c+d x))^{5/2}}{(a \sin (c+d x)+a)^{5/2}}dx\)

\(\Big \downarrow \) 3159

\(\displaystyle -\frac {e^2 \int \frac {\sqrt {e \cos (c+d x)}}{\sqrt {\sin (c+d x) a+a}}dx}{a^2}-\frac {4 e (e \cos (c+d x))^{3/2}}{3 a d (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {e^2 \int \frac {\sqrt {e \cos (c+d x)}}{\sqrt {\sin (c+d x) a+a}}dx}{a^2}-\frac {4 e (e \cos (c+d x))^{3/2}}{3 a d (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3163

\(\displaystyle -\frac {e^2 \left (\frac {e \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\sqrt {\cos (c+d x)+1}}{\sqrt {e \cos (c+d x)}}dx}{a \sin (c+d x)+a \cos (c+d x)+a}-\frac {e \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\sin (c+d x)}{\sqrt {e \cos (c+d x)} \sqrt {\cos (c+d x)+1}}dx}{a \sin (c+d x)+a \cos (c+d x)+a}\right )}{a^2}-\frac {4 e (e \cos (c+d x))^{3/2}}{3 a d (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {e^2 \left (\frac {e \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )+1}}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \sin (c+d x)+a \cos (c+d x)+a}-\frac {e \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int -\frac {\cos \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )+1}}dx}{a \sin (c+d x)+a \cos (c+d x)+a}\right )}{a^2}-\frac {4 e (e \cos (c+d x))^{3/2}}{3 a d (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {e^2 \left (\frac {e \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )+1}}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \sin (c+d x)+a \cos (c+d x)+a}+\frac {e \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\cos \left (\frac {1}{2} (2 c+\pi )+d x\right )}{\sqrt {e \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )} \sqrt {\sin \left (\frac {1}{2} (2 c+\pi )+d x\right )+1}}dx}{a \sin (c+d x)+a \cos (c+d x)+a}\right )}{a^2}-\frac {4 e (e \cos (c+d x))^{3/2}}{3 a d (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3254

\(\displaystyle -\frac {e^2 \left (\frac {e \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\cos \left (\frac {1}{2} (2 c+\pi )+d x\right )}{\sqrt {e \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )} \sqrt {\sin \left (\frac {1}{2} (2 c+\pi )+d x\right )+1}}dx}{a \sin (c+d x)+a \cos (c+d x)+a}-\frac {2 e \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {1}{\frac {\sin (c+d x) \tan (c+d x)}{\cos (c+d x)+1}+1}d\left (-\frac {\sin (c+d x)}{\sqrt {e \cos (c+d x)} \sqrt {\cos (c+d x)+1}}\right )}{d (a \sin (c+d x)+a \cos (c+d x)+a)}\right )}{a^2}-\frac {4 e (e \cos (c+d x))^{3/2}}{3 a d (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {e^2 \left (\frac {e \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\cos \left (\frac {1}{2} (2 c+\pi )+d x\right )}{\sqrt {e \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )} \sqrt {\sin \left (\frac {1}{2} (2 c+\pi )+d x\right )+1}}dx}{a \sin (c+d x)+a \cos (c+d x)+a}+\frac {2 \sqrt {e} \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \arctan \left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {\cos (c+d x)+1} \sqrt {e \cos (c+d x)}}\right )}{d (a \sin (c+d x)+a \cos (c+d x)+a)}\right )}{a^2}-\frac {4 e (e \cos (c+d x))^{3/2}}{3 a d (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3312

\(\displaystyle -\frac {e^2 \left (\frac {e \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {1}{\sqrt {e \cos (c+d x)} \sqrt {\cos (c+d x)+1}}d\cos (c+d x)}{d (a \sin (c+d x)+a \cos (c+d x)+a)}+\frac {2 \sqrt {e} \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \arctan \left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {\cos (c+d x)+1} \sqrt {e \cos (c+d x)}}\right )}{d (a \sin (c+d x)+a \cos (c+d x)+a)}\right )}{a^2}-\frac {4 e (e \cos (c+d x))^{3/2}}{3 a d (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 63

\(\displaystyle -\frac {e^2 \left (\frac {2 \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {1}{\sqrt {\cos (c+d x)+1}}d\sqrt {e \cos (c+d x)}}{d (a \sin (c+d x)+a \cos (c+d x)+a)}+\frac {2 \sqrt {e} \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \arctan \left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {\cos (c+d x)+1} \sqrt {e \cos (c+d x)}}\right )}{d (a \sin (c+d x)+a \cos (c+d x)+a)}\right )}{a^2}-\frac {4 e (e \cos (c+d x))^{3/2}}{3 a d (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 222

\(\displaystyle -\frac {e^2 \left (\frac {2 \sqrt {e} \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \text {arcsinh}\left (\frac {\sqrt {e \cos (c+d x)}}{\sqrt {e}}\right )}{d (a \sin (c+d x)+a \cos (c+d x)+a)}+\frac {2 \sqrt {e} \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \arctan \left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {\cos (c+d x)+1} \sqrt {e \cos (c+d x)}}\right )}{d (a \sin (c+d x)+a \cos (c+d x)+a)}\right )}{a^2}-\frac {4 e (e \cos (c+d x))^{3/2}}{3 a d (a \sin (c+d x)+a)^{3/2}}\)

input
Int[(e*Cos[c + d*x])^(5/2)/(a + a*Sin[c + d*x])^(5/2),x]
 
output
(-4*e*(e*Cos[c + d*x])^(3/2))/(3*a*d*(a + a*Sin[c + d*x])^(3/2)) - (e^2*(( 
2*Sqrt[e]*ArcSinh[Sqrt[e*Cos[c + d*x]]/Sqrt[e]]*Sqrt[1 + Cos[c + d*x]]*Sqr 
t[a + a*Sin[c + d*x]])/(d*(a + a*Cos[c + d*x] + a*Sin[c + d*x])) + (2*Sqrt 
[e]*ArcTan[(Sqrt[e]*Sin[c + d*x])/(Sqrt[e*Cos[c + d*x]]*Sqrt[1 + Cos[c + d 
*x]])]*Sqrt[1 + Cos[c + d*x]]*Sqrt[a + a*Sin[c + d*x]])/(d*(a + a*Cos[c + 
d*x] + a*Sin[c + d*x]))))/a^2
 

3.4.15.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 63
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2/b   S 
ubst[Int[1/Sqrt[c + d*(x^2/b)], x], x, Sqrt[b*x]], x] /; FreeQ[{b, c, d}, x 
] && GtQ[c, 0]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3159
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[2*g*(g*Cos[e + f*x])^(p - 1)*((a + b*Sin[e + f 
*x])^(m + 1)/(b*f*(2*m + p + 1))), x] + Simp[g^2*((p - 1)/(b^2*(2*m + p + 1 
)))   Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; 
FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] & 
& NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*p]
 

rule 3163
Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[g*Sqrt[1 + Cos[e + f*x]]*(Sqrt[a + b*Sin[e + f*x 
]]/(a + a*Cos[e + f*x] + b*Sin[e + f*x]))   Int[Sqrt[1 + Cos[e + f*x]]/Sqrt 
[g*Cos[e + f*x]], x], x] - Simp[g*Sqrt[1 + Cos[e + f*x]]*(Sqrt[a + b*Sin[e 
+ f*x]]/(b + b*Cos[e + f*x] + a*Sin[e + f*x]))   Int[Sin[e + f*x]/(Sqrt[g*C 
os[e + f*x]]*Sqrt[1 + Cos[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, g}, x] & 
& EqQ[a^2 - b^2, 0]
 

rule 3254
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b + d*x^2), x], 
x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]))], x 
] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] 
 && NeQ[c^2 - d^2, 0]
 

rule 3312
Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*(( 
c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(b*f)   Su 
bst[Int[(a + x)^m*(c + (d/b)*x)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, 
b, c, d, e, f, m, n}, x]
 
3.4.15.4 Maple [A] (verified)

Time = 3.32 (sec) , antiderivative size = 287, normalized size of antiderivative = 1.32

method result size
default \(-\frac {2 \left (3 \sin \left (d x +c \right ) \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )-3 \sin \left (d x +c \right ) \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )+2 \cos \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-2 \sin \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+3 \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )-3 \,\operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )+2 \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) \sqrt {e \cos \left (d x +c \right )}\, e^{2}}{3 d \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) a^{2} \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {a \left (1+\sin \left (d x +c \right )\right )}}\) \(287\)

input
int((e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
-2/3/d*(3*sin(d*x+c)*arctan((-cos(d*x+c)/(1+cos(d*x+c)))^(1/2))-3*sin(d*x+ 
c)*arctanh(sin(d*x+c)/(1+cos(d*x+c))/(-cos(d*x+c)/(1+cos(d*x+c)))^(1/2))+2 
*cos(d*x+c)*(-cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-2*sin(d*x+c)*(-cos(d*x+c)/( 
1+cos(d*x+c)))^(1/2)+3*arctan((-cos(d*x+c)/(1+cos(d*x+c)))^(1/2))-3*arctan 
h(sin(d*x+c)/(1+cos(d*x+c))/(-cos(d*x+c)/(1+cos(d*x+c)))^(1/2))+2*(-cos(d* 
x+c)/(1+cos(d*x+c)))^(1/2))*(e*cos(d*x+c))^(1/2)*e^2/(1+cos(d*x+c)+sin(d*x 
+c))/a^2/(-cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/(a*(1+sin(d*x+c)))^(1/2)
 
3.4.15.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.53 (sec) , antiderivative size = 1334, normalized size of antiderivative = 6.12 \[ \int \frac {(e \cos (c+d x))^{5/2}}{(a+a \sin (c+d x))^{5/2}} \, dx=\text {Too large to display} \]

input
integrate((e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c))^(5/2),x, algorithm="fricas 
")
 
output
-1/6*(3*(a^3*d*cos(d*x + c)^2 - a^3*d*cos(d*x + c) - 2*a^3*d - (a^3*d*cos( 
d*x + c) + 2*a^3*d)*sin(d*x + c))*(-e^10/(a^10*d^4))^(1/4)*log((2*(e^7*sin 
(d*x + c) + (a^5*d^2*e^2*cos(d*x + c) + a^5*d^2*e^2)*sqrt(-e^10/(a^10*d^4) 
))*sqrt(e*cos(d*x + c))*sqrt(a*sin(d*x + c) + a) + (2*a^8*d^3*cos(d*x + c) 
^2 + a^8*d^3*cos(d*x + c) - a^8*d^3*sin(d*x + c) - a^8*d^3)*(-e^10/(a^10*d 
^4))^(3/4) + (a^3*d*e^5*cos(d*x + c) + a^3*d*e^5 + (2*a^3*d*e^5*cos(d*x + 
c) + a^3*d*e^5)*sin(d*x + c))*(-e^10/(a^10*d^4))^(1/4))/(cos(d*x + c) + si 
n(d*x + c) + 1)) - 3*(a^3*d*cos(d*x + c)^2 - a^3*d*cos(d*x + c) - 2*a^3*d 
- (a^3*d*cos(d*x + c) + 2*a^3*d)*sin(d*x + c))*(-e^10/(a^10*d^4))^(1/4)*lo 
g((2*(e^7*sin(d*x + c) + (a^5*d^2*e^2*cos(d*x + c) + a^5*d^2*e^2)*sqrt(-e^ 
10/(a^10*d^4)))*sqrt(e*cos(d*x + c))*sqrt(a*sin(d*x + c) + a) - (2*a^8*d^3 
*cos(d*x + c)^2 + a^8*d^3*cos(d*x + c) - a^8*d^3*sin(d*x + c) - a^8*d^3)*( 
-e^10/(a^10*d^4))^(3/4) - (a^3*d*e^5*cos(d*x + c) + a^3*d*e^5 + (2*a^3*d*e 
^5*cos(d*x + c) + a^3*d*e^5)*sin(d*x + c))*(-e^10/(a^10*d^4))^(1/4))/(cos( 
d*x + c) + sin(d*x + c) + 1)) - 3*(I*a^3*d*cos(d*x + c)^2 - I*a^3*d*cos(d* 
x + c) - 2*I*a^3*d + (-I*a^3*d*cos(d*x + c) - 2*I*a^3*d)*sin(d*x + c))*(-e 
^10/(a^10*d^4))^(1/4)*log((2*(e^7*sin(d*x + c) - (a^5*d^2*e^2*cos(d*x + c) 
 + a^5*d^2*e^2)*sqrt(-e^10/(a^10*d^4)))*sqrt(e*cos(d*x + c))*sqrt(a*sin(d* 
x + c) + a) + (2*I*a^8*d^3*cos(d*x + c)^2 + I*a^8*d^3*cos(d*x + c) - I*a^8 
*d^3*sin(d*x + c) - I*a^8*d^3)*(-e^10/(a^10*d^4))^(3/4) + (-I*a^3*d*e^5...
 
3.4.15.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(e \cos (c+d x))^{5/2}}{(a+a \sin (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate((e*cos(d*x+c))**(5/2)/(a+a*sin(d*x+c))**(5/2),x)
 
output
Timed out
 
3.4.15.7 Maxima [F]

\[ \int \frac {(e \cos (c+d x))^{5/2}}{(a+a \sin (c+d x))^{5/2}} \, dx=\int { \frac {\left (e \cos \left (d x + c\right )\right )^{\frac {5}{2}}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate((e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c))^(5/2),x, algorithm="maxima 
")
 
output
integrate((e*cos(d*x + c))^(5/2)/(a*sin(d*x + c) + a)^(5/2), x)
 
3.4.15.8 Giac [F(-1)]

Timed out. \[ \int \frac {(e \cos (c+d x))^{5/2}}{(a+a \sin (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate((e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c))^(5/2),x, algorithm="giac")
 
output
Timed out
 
3.4.15.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(e \cos (c+d x))^{5/2}}{(a+a \sin (c+d x))^{5/2}} \, dx=\int \frac {{\left (e\,\cos \left (c+d\,x\right )\right )}^{5/2}}{{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

input
int((e*cos(c + d*x))^(5/2)/(a + a*sin(c + d*x))^(5/2),x)
 
output
int((e*cos(c + d*x))^(5/2)/(a + a*sin(c + d*x))^(5/2), x)